Induced Representations of Locally Compact Groups

Induced Representations of Locally Compact Groups

eBook - 2013
Rate this:
"Locally compact groups arise in many diverse areas of mathematics, the physical sciences, and engineering and the presence of the group is usually felt through unitary representations of the group. This observation underlies the importance of understanding such representations and how they may be constructed, combined, or decomposed. Of particular importance are the irreducible unitary representations. In the middle of the last century, G.W. Mackey initiated a program to develop a systematic method for identifying all the irreducible unitary representations of a given locally compact group G. We denote the set of all unitary equivalence classes of irreducible unitary representations of G by G. Mackey's methods are only effective when G has certain restrictive structural characteristics; nevertheless, time has shown that many of the groups that arise in important problems are appropriate for Mackey's approach. The program Mackey initiated received contributions from many researchers with some of the most substantial advances made by R.J. Blattner and J.M.G. Fell. Fell'swork is particularly important in studying Gas a topological space. At the core of this program is the inducing construction, which is a method of building a unitary representation of a group from a representation of a subgroup"--
Publisher: Cambridge ; New York : Cambridge University Press, 2013
Characteristics: xiii, 343 p. :,ill

Opinion

From the critics


Community Activity

Comment

Add a Comment

There are no comments for this title yet.

Age

Add Age Suitability

There are no ages for this title yet.

Summary

Add a Summary

There are no summaries for this title yet.

Notices

Add Notices

There are no notices for this title yet.

Quotes

Add a Quote

There are no quotes for this title yet.

Explore Further

Browse by Call Number

Recommendations

Subject Headings

  Loading...

Find it at my library

  Loading...
[]
[]
To Top